3 resultados para Clonal sub-range

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The African trypanosome, Trypanosoma brucei, has been shown to undergo genetic exchange in the laboratory, but controversy exists as to the role of genetic exchange in natural populations. Much of the analysis to date has been derived from isoenzyme or randomly amplified polymorphic DNA data with parasite material from a range of hosts and geographical locations. These markers fail to distinguish between the human infective (T. b. rhodesiense) and nonhuman infective (T. b. brucei) “subspecies” so that parasites derived from hosts other than humans potentially contain both subspecies. To overcome some of the inherent problems with the use of such markers and diverse populations, we have analyzed a well-defined population from a discrete geographical location (Busoga, Uganda) using three recently described minisatellite markers. The parasites were primarily isolated from humans and cattle with the latter isolates further characterized by their ability to resist lysis by human serum (equivalent to human infectivity). The minisatellite markers show high levels of polymorphism, and from the data obtained we conclude that T. b. rhodesiense is genetically isolated from T. b. brucei and can be unambiguously identified by its multilocus genotype. Analysis of the genotype frequencies in the separated T. b. brucei and T. b. rhodesiense populations shows the former has an epidemic population structure whereas the latter is clonal. This finding suggests that the strong linkage disequilibrium observed in previous analyses, where human and nonhuman infective trypanosomes were not distinguished, results from the treatment of two genetically isolated populations as a single population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed 75 isolates of Plasmodium falciparum, collected in Venezuela during both the dry (November) and rainy (May–July) seasons, with a range of genetic markers including antigen genes and 14 random amplified polymorphic DNA (RAPD) primers. Thirteen P. falciparum stocks from Kenya and four other Plasmodium species are included in the analysis for comparison. Cross-hybridization shows that the 14 RAPD primers reveal 14 separate regions of the parasite's genome. The P. falciparum isolates are a monophyletic clade, significantly different from the other Plasmodium species. We identify three RAPD characters that could be useful as “tags” for rapid species identification. The Venezuelan genotypes fall into two discrete genetic subdivisions associated with either the dry or the rainy season; the isolates collected in the rainy season exhibit greater genetic diversity. There is significant linkage disequilibrium in each seasonal subsample and in the full sample. In contrast, no linkage disequilibrium is detected in the African sample. These results support the hypothesis that the population structure of P. falciparum in Venezuela, but not in Africa, is predominantly clonal. However, the impact of genetic recombination on Venezuelan P. falciparum seems higher than in parasitic species with long-term clonal evolution like Trypanosoma cruzi, the agent of Chagas' disease. The genetic structure of the Venezuelan samples is similar to that of Escherichia coli, a bacterium that propagates clonally, with occasional genetic recombination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic surveys of parthenogenetic vertebrate populations have demonstrated a common pattern of relatively high degrees of clonal variation and the coexistence of numerous clones. In striking contrast, the Phoxinus eos/Phoxinus neogaeus/hybrid gynogen complex of cyprinid fishes exhibits no clonal variation within a northern Minnesota drainage characterized by successional beaver ponds. Gynogens were sampled from three habitats in each of four different pond types in a single drainage in Voyageurs National Park, Minnesota. The abundance of gynogens relative to sexual dace varied with pond type, being least common in deep upland ponds and most common in shallow, collapsed, lowland ponds (13.4% and 48.6%, respectively). Simple-sequence multilocus DNA fingerprinting of 464 individual gynogens detected one, and only one, clone. DNA fingerprints, generated sequentially by using three oligonucleotide probes, (CAC)5, (GACA)4, and the Jeffreys' 33.15 probe, all revealed the same unprecedented lack of variation. The extreme lack of clonal diversity in these gynogens across a range of habitat types does not fit the general pattern of high clonal diversity found within populations of other vertebrate parthenogens.